Because I said so: The vaccination debate and a waning trust in science

trust

Written By Dr. Erika E. Alexander

A few weeks ago, I opened my Facebook page to find a war in progress. Shared posts from CNN, Time Magazine, the New York Times, and a wide variety of blogs about vaccination and the “anti-vaxxer” movement littered my timeline.  Each post by members of my highly educated, scientist-heavy friend list was accompanied by the poster’s vehement condemnation of the anti-vaccination movement in Facebook status form.  Although spirited, this war of words appeared to be one-sided, in that I generally only saw one type of argument: Vaccinate your child because SCIENCE says so.  But is “Science says so” a valid argument in this day and age?

This vaccination debate has been going on for over a decade now, but has most recently been brought back into the public eye due to an outbreak of measles traced back to a particularly sensational place: Disneyland, USA .  That a disease considered eradicated in the United States since 2000 could attempt a comeback in what is affectionately known as “the happiest place on earth” horrifies many, and for good reason. Since January 1 of this year, over 150 cases of measles have been reported in 17 different states, according to the Centers for Disease Control and Prevention (CDC). These numbers are reported from 3 separate outbreaks in California, Illinois and Nevada, with California having the largest reported outbreak of the three.  The CDC also reports that the majority of people (read: children) who fell ill were unvaccinated.

The anti-vaccination movement (also known as the  “anti-vaxxer” movement) has also been in the news of late, because of this most recent outbreak and the idea that unvaccinated children are its cause. Many attribute the beginning of the anti-vaccination movement to a 1998 study done in the UK by Andrew Wakefield, which drew a link between the MMR (measles, mumps, and rubella) vaccine and increased numbers of autism spectrum disorders in vaccinated children (Read more here).  The story was immediately picked up by the media, and inspired panic among parents worldwide.  Vaccination rates in the UK and Ireland dropped significantly, while rates of measles and mumps skyrocketed, which of course, resulted in deaths and severe injuries.

Numerous studies have since discounted Wakefield’s link between MMR vaccine and autism, and the article was retracted due to fraud and “improper research practices” (see here). Wakefield was eventually found guilty of professional misconduct by the General Medical Council and banned from practicing as a doctor in the UK, as a result of this fraudulent work (here), although he still does speaking engagements in support of his work. His story is used in ethical research classes across the nation to illustrate the destructive power of bad science and the dangers of media misinterpretation of science. However, the damage to the public confidence in vaccines appears to be done. Celebrities like Jenny McCarthy, Donald Trump and Alicia Silverstone continue to be vocal in their support of the anti-vaccination movement, some even citing the now-debunked Wakefield study and “personal experience”. Meanwhile, measles is out here becoming a “thing”.  Again.

As I think about all of this, what comes to mind is something that I tell my students:  Science is based on trust.  I explain to them that the lifeblood of science is trust, and that without trust, research and even Science as we know it would collapse into a pile of spreadsheets and pipet tips.

Trust from one scientist to another: I trust that you will complete this portion of our experiment correctly and efficiently, and that you will not fabricate or change data. Trust between scientific colleagues/community members: I trust that when you publish your work and interpret the findings, that you are making these assertions based on your trustworthy (and expert) opinions. Trust between the government and scientist: I trust that when I give you this multi-million dollar grant, that you will produce high-quality, tangible and useful work in return. And finally, trust between the general public and science/scientists:  I trust that you as a scientist are very intelligent/an expert, and that what you tell me about the world is important and correct.  (As a note, polls show that although the perceived contribution of scientists to society as a whole is much lower than say members of the military and teachers, they are rated by the public as one of the most highly regarded professions; lawyers and politicians are the least esteemed. (See here)  However, other polls have found that while Americans view scientists as highly competent individuals, they are also not trusted, possibly because they are not seen as warm or friendly. (here)  Interestingly enough, the PRC study also found that public esteem of scientists has actually gone down between 2009 and 2013, although it’s unclear whether that is statistically significant. Clearly science has a complicated relationship with society.)

Trust is the reason I get so worked up about the anti-vaccination movement or any movement that is based on anti-science or anti-medicine rhetoric. I should state here that I believe in vaccination of children, and I believe that great science is one of the hallmarks of a thriving society.  But I also know that not every published paper is good science. I know that not every scientist has the best interest of the general public (or even science) at heart. And not only that, I know that biomedical jargon and government mandates are no match for perfectly tanned, rich celebrities and good old-fashioned fear-mongering.

Examine the trajectory of the public opinion on climate change, for example. It wasn’t so long ago that many people simply thought global warming was an incendiary attempt by Al Gore to sell more books.  Although the current public sentiment appears to agree with the concrete scientific evidence for climate change, we still have Americans lawmakers, who not only distrust it, but actively fight against the idea that humans are negatively impacting our planet. So how is the public to know whom to trust?  Or should they trust anyone at all?

Scientists understand the basic tenet of success in research is this: trust no one, especially when he comes bearing gifts of interpretation perfectly aligned with his own agenda and no data to back it up. We poke and prod at arguments and data, mull over what we are told, and decide whether it makes sense to believe it, as we were trained to do.  In this way, we can feel confident in our ability to maintain trust between colleagues, funding organizations, and institutions, and to root out those among us who are not worthy of our confidence. The vast majority of the population does not have this training, thus many simply rely on what the media, their personal experiences, or their favorite celebrity to tell them what to do. In addition, there have been many past and present instances of scientists exhibiting untrustworthy behavior, without the globally known repercussions seen in the Wakefield case. Can we truly blame the public for the waning trust in science and scientists? Should we really be surprised when measles outbreaks begin at amusement parks or politicians pass a bill that ignores climate change? Should we be asking the general public to become more science saavy?  Or should we be asking how science can become more trustworthy?

 

Will actions speak louder than words in the ongoing STEM discussion?

Written by Dr. Stacy-Ann Allen Ramdial

Over the last 10 years the acronym STEM (Science, Technology, Engineering and Math) has become a buzzword in many circles. Is it possible that like many pop culture expressions,  the clever acronym-word duality that is “STEM” will fade into obscurity once its use (or misuse) has been exhausted?

STEM means different things to different audiences with varying degrees of overlap in meaning. For some it excludes any reference to medical professions; for others, it is an all-encompassing term to mean anything remotely related to science. The acronym was first introduced by Judith Ramaley, the director at the National Science foundation, in 2001 for policy making purposes [1]. Since then the term has become the go to buzzword for policymakers, academics, and the public regardless of whether its use is appropriately employed.

I’ve written, debated, read, and listened to the merits of a STEM educated workforce. But as we look towards the 15 year anniversary of the terms coinage, I sometimes wonder if anything profoundly meaningful will come from the conversation.

Don’t get me wrong, a productive conversation is one worth having; however one must ask at some point: has this STEM conversation really been productive considering how much of it has translated into meaningful action? Have we gotten so complacent with the use of the term that we simply employ its use as a policy filibuster or has the definition of STEM become so “muddled” that many of the key stakeholders are frequently and unintentionally talking past each other?

Today more than ever, as we react to the effects of globalization and rapid technological advances, we embrace the idea that without a sustained STEM educated workforce, the U.S. will fall behind as a global leader. This has been highlighted in President Obama’s past and most recent State of the Union address where he has stressed the importance of both preparing students to succeed in the global economy, and supporting a STEM workforce to optimize economic growth.

If this is our commitment, then how many more articles have to be written, debates had, speeches made, and conferences held about the leaky STEM pipeline, the unprepared STEM workforce, the failure to capitalize on the investments made in domestic STEM graduates, the racial/ gender disparities in the STEM workforce, and the wage gap in STEM fields, before we make measurable headway. I could list more of the STEM issues tackled on a daily basis by policymakers, academics and the public, but I won’t belabor the point in this piece as a simple web search will provide a comprehensive background and update on the discussion. However, as a contributor and a benefactor of the ongoing STEM discussion, I have to ask: will STEM lose its conversational prominence and if so will it be due to passivity, pandering, or progress?

1. Donahoe, D. The definition of STEM, Today’s Engineer, December 2013

From HeLa to Henrietta: Recognizing the humanity in genetic material

Henrietta Lacks Cells

Written by Dr. Erika E. Alexander, PhD

On August 27, 2014, the National Institute of Health (NIH) released an update to the current guidelines for scientists who receive NIH funding to study genomics. In the new policy, the NIH mandates that all funded data in genomics be posted online with the intent that the information be accessible to other researchers. Given the recent and heated debate about the ethics of sharing human biological and genetic material within the scientific community, it would appear that the NIH has chosen to bunk with the camp promoting rapid scientific discovery as being paramount over consent. However, you will also find that tucked very neatly within this update, are more specific guidelines for gaining informed consent of the participants who are contributing this genomic data.

As of January 25, 2015, all funding applications to the NIH proposing large-scale human and non-human projects must meet these requirements. Specifically, researchers are now required to tell study participants that their de-identified data (and thus genomic information) may be shared with the scientific community for future research, as well as with the general public. This requirement also applies to research using de-identified cell lines or clinical specimens.

This policy is groundbreaking because previously, researchers were simply required to discuss with potential participants the goals of the current work, and study subjects gave their consent to participate based on this discussion. Because of the vagueness of these requirements, there have also been many instances of human biological data being initially collected (with or without consent) for one study or clinical use, but being shared and used for a multitude of other unapproved applications.  This lack of transparency has lead to widespread mistrust of both the medical and scientific professions, particularly by people of color.

One of the most famous examples of this is the case of Henrietta Lacks (1920-1951). Henrietta was an African-American woman whose cancer cells (denoted by HeLa cells) were used to generate a cell line that has served as the basis for a multitude of groundbreaking work in cancer research. However, Henrietta did not consent to, nor was she even informed of the possibility of the use of her biological material for scientific work before her death at age 31. Likewise, consent was not obtained from any of her family members before or after her death. In fact, for decades, the Lacks family were not even aware that Henrietta’s cells were used for research, despite its ubiquitous use in a variety of places, from molecular biology labs to medical school classrooms. The family of Henrietta Lacks made their vehement objections known to the public and to NIH in 2013, after two researchers sequenced her genome and published her genetic data in a 2012 paper, without the family’s consent. The Poston Collective has covered this story previously; for more information about Henrietta Lacks and the resolution of their case read here and here.

There have been other examples of the use of human biological material being solicited for specific research or clinical purposes, and actually being used for other undisclosed research. For example, in 2012, parents in both Minnesota and Texas sued the states because dried blood samples left over from newborn screening tests were used to create a DNA database, without parental consent. In the Texas case, the settlement required the destruction of 5 million dried blood samples, and in both Texas and Minnesota, resulted in more specific state-level laws requiring informed consent for blood samples retained for research. Read more about these cases here.

In 2010, Arizona State University settled a case brought by the Havasupai tribe of Arizona, paying out $700,000 to the tribe. The tribe alleged that blood samples originally collected for a study on diabetes were actually used in research on mental illness within the tribe and on population genetics. The Havasupai participants were not informed of this potential use of their genetic material and did not consent to their genetic information being published.

Naturally, these examples and others have inspired spirited debate within the scientific community regarding whether informed consent is really necessary with biological material, de-identified or not. Some argue that requiring informed consent is at best difficult to implement, and at worst unfeasible depending on the proposed work. They insist that it will slow down the pace of science, and may bar important research from being done.

I believe that in this day and age, with so many instances of past misconduct and exploitation of people of color, it is essential that the scientific community be seen as upholding certain values. These values include respect of human rights over scientific discovery. In my opinion, it may take a little extra work and time to gain consent from study participants, but it will go a long way to maintaining relationships and inspiring trust within the community. People choose to participate in scientific studies because of the reputation of scientists as honest, trustworthy and unbiased people. As such, it would be to the detriment of the scientific community to be thought of as being careless with biological material or genetic information, or even misleading subjects for their own benefit or agenda. This last point is probably why the NIH has been so proactive in resolving this dispute with the descendants of Henrietta Lacks.

The updated consent policy establishes the NIH as firmly on the side of informed consent and human right to choose what happens to their genetic and biological material, but still values sharing research findings with the rest of the scientific community. It allows the NIH to publicly recognize the humanity in human genetic and biological material.  And in her own way, with the tireless advocacy of her descendants, the life of Henrietta Lacks played a role in not only advancing scientific research, but how science sees the subjects that it depends on: as human.

What do you think?  Is informed consent really necessary for genetic material? What effects do you think the new NIH funding policy will have on science as a whole?  Is this change enough?

Age Ain’t Nothing But A Number: Should the NIH impose an average age for grants?

Written By Dr. Chloe N. Poston

Close your eyes and think of a scientist. What does this person look like? Is this person a man or a woman? Young or old? Stylish or disheveled? I’m willing to bet what you saw in your mind (especially if you don’t know any scientists personally) is something closer to a photo of Albert Einstein or some version of the characters on Big Bang Theory. Rarely do we imagine the stages between a student and full-fledged scientist. However, this “in-between” time often defines people’s scientific trajectories; decisions in this phase can be career making or breaking.

Here’s what it looks like. The classic career path in science starts with an undergraduate degree, followed usually by a masters and then a doctoral degree. After the doctoral degree comes a “post-doc” or post-doctoral position where you train with a more senior scientist in your field to become an independent researcher. In other professions, the equivalent of a post-doc is an actual entry-level position with retirement benefits that counts towards professional experiences. Unfortunately, the post-doc is more like an extension of graduate school, where the pay is meager and the label of “trainee” leads employers outside of academia to ignore these years as “experience”.

You might wonder how long this takes. Let’s do the math. If a budding scientist starts college at age 18, completes a BS in 4 years, finishes a Masters and PhD in 6 years, and trains as a postdoc for 2-3 years, then that individual is ready to start on an independent path at the age of 31 in the most ideal of situations. This means today’s “early career” scientists are 33 years old before they begin to look for work as independent scientists. There are data to support this informal calculation: the Survey of Earned Doctorates shows that in the fields of biomedical sciences and chemistry people are not actually getting their first job after a post-doc until the age of 35.

It is at this point that early career scientists on the tenure track begin to apply for R01 grants from the NIH. For my non-scientist readers, an R01 grant provides an average of $400,000 for a research project that is in line with the priorities of the National Institute of Health. These grants finance the academic biomedical research enterprise and are an important step for new professors to establish themselves with solid research and publications, which are often the measure of scientific productivity. Many universities require that new professors secure an R01 grant within the first five years of being hired to remain on the tenure track.

Of course young scientists are not the only people vying for this funding; the competition is fierce and spans from early career to well established scientists. The average age of R01 recipients has steadily increased. In 1998, PhDs were awarded their first R01 at the age of 36; in 2014 that age is 42. These stats have sparked much debate. Maryland Rep. Andy Harris thinks that the age distribution of awarded grants should be mandated. And others have differing opinions. Some think this is a function of too many postdocs with few realistic employment prospects in academia.

However, there are several other reasons that the average age of R01 recipients is in the 40’s and not the 30’s: 1) if students and post-docs are recognizing that academic prospects are slim, perhaps they are exploring other options that are related to science, but don’t require bench work; 2) perhaps post-docs and younger independent researchers are taking advantage of pathway to independence mechanisms like K99-R00, which provides NIH funding to bridge post-doctoral training and the process of starting a new laboratory; and 3) young post-docs may not be adequately trained to prepare competitive grant proposals to vie for an ever shrinking budget.

Young scientists are facing more difficult grant reviews than their advisers faced at the same point in their career as a function of less money. They are keenly aware of the small number of tenure track academic positions available. They are intelligently weighing their options. Some will work through this difficult era in the academic sector, and they will be awarded R01 grants. Others will begin to explore other career paths like industry, science writing, policy, higher education administration, grant administration, and some may leave scientific research fields all together. None of these people will apply for R01 grants.

Perhaps this is the source of the skewed age. More people are realizing that they can leverage scientific skills in other fields and find success. The age-old scientific career path that leads straight to the professoriate can no longer accommodate all who embark upon it. Young people, who are still training to be scientists are accepting that fact and making other plans.

Trends at the NIH and elsewhere should and do reflect that. So while the stats are interesting, it’s safe to say that age is pretty poor metric to use for programmatic recommendations.

What do you think? Share your comments below.

 

 

 

Afterschool and Summer Programs Help Enhance Minority Students Interest in STEM

Written by Dr. Kimberly Mulligan

STEM reform at the K-12 level is a hot topic. The vast majority of the jobs of tomorrow will require individuals that are knowledgeable in these fields, yet the United States is not equipped to meet this demand. There is potential for filling this shortage with underrepresented minorities, African-Americans, Hispanics, American Indians, and women, however this resource is being untapped. What can we do to attract and retain this diverse group of individuals to areas such as computer science, mathematics, chemistry and engineering?

While reform is taking place in schools across the country, students spend less than 20% of their waking hours in the classroom. School districts increasingly spend time on subjects such as English and math to meet performance standards while science education is shortchanged. So what is the most effective way to improve opportunities and nurture student interest in STEM? Afterschool and summer programs are a great complement for traditional classrooms because they provide science experiences that go outside typical science classroom learning. These programs are in a unique position, due to their content flexibility and the ability to provide additional time to engage in STEM topics in a manner that is different from that seen in a traditional school setting. In the setting of afterschool and/or summer programs students have time to delve deeper into STEM topics that are of interest to them in a manner that is more suited to their specific learning needs. Approximately eight million children are enrolled in afterschool programs nationwide, and the parents of another 18.5 million children would sign their children up if a program were available. Additionally, an estimated 14.3 million American schoolchildren currently participate in summer learning programs, while parent interest indicates 24 million more would enroll if programs were available (http://www.afterschoolalliance.org/documents/Special_Report_on_Summer_052510.pdf; America After 3PM, 2009). Evaluation of high-quality STEM afterschool programs found that the benefits included improved attitudes towards STEM fields and careers, increased STEM knowledge and skills, and a higher likelihood of graduation and pursuing STEM careers (STEM Learning in Afterschool: An Analysis of Impact and Outcomes; Afterschool Alliance, September 2011). Minority children are more likely to participate in these programs therefore increasing access to STEM fields and careers among populations that are currently underrepresented will potentially increase their scientific curiosity and literacy and hopefully create more diversity in these fields.

The Harvard Family Research Project stated:

“The dominant assumption behind much current educational policy and practice is that school is the only place where and when children learn. This assumption is wrong. Forty years of steadily accumulating research shows that out-of-school, or “complementary learning” opportunities are major predictors of children’s development, learning, and educational achievement. The research also indicates that economically and otherwise disadvantaged children are less likely than their more-advantaged peers to have access to these opportunities. This inequity substantially undermines their learning and chances for school success.”

In high school I had the opportunity to attend my choice of summer programs that were geared towards students interested in STEM (even though that wasn’t a catch phrase back then). One was at Florida Agricultural and Mechanical University in Tallahassee, FL (where I would eventually receive a B.S. in Chemistry) and the other was at Grambling State University in Grambling, LA. How wonderful was it to have the opportunity to spend the summer with like-minded students who, while still cool in my opinion, were also interested in STEM and focused on college? I wasn’t from either of these states, but I was fortunate enough to have parents who recognized the need to encourage my academic interests. However I realize that many students, especially those that are economically disadvantaged, do not have access to opportunities like this which is why it’s important to allocate funds and increase collaborations between K-12 education, science centers, universities, industry, and government for afterschool and summer programs that allows students more hands-on learning. By doing so, there is an opportunity to bring more underrepresented students into the STEM pipeline.

Walk a mile

Written By Dr. Stacy-Ann Allen-Ramdial

On Thursday May 22, 2014 the House of Representatives Committee on Science Space and Technology held a Markup of H.R. 4186, the Frontiers in Innovation, Research, Science, and Technology (FIRST) Act of 2014, a bill introduced by Representative Lamar Smith, the chair of the Committee. As a proposed substitute for the bipartisan supported America COMPETES Act, which is up for re authorization, the bill has met with widespread criticism from stakeholders in the scientific community. To demonstrate what many of these stakeholders consider significant deficiencies in the bill, democratic members proposed over 20 amendments at the Markup.

As I listened to amendment after amendment get offered and ceremoniously opposed with arguments that seem so out of touch with reality, it was hard to believe that everyone was supposedly aiming for the same goal of advancing Science and Technology. The more I listened, the more I wondered if things change if politicians and basic researchers “walked a mile” in each others shoes.

My observation over the last three months on the hill is that there is skepticism about scientists, science and the scientific process not to mention misinformation regarding the research process among some politicians. This doubt filled mindset greatly influences how, what type, and when research is funded. On the other hand, I’ve often heard colleagues, members of the research community and the public express skepticism and doubt about how little politicians care about the future of science and technology. This mindset is seen when these same stakeholders stop being engaged in the political process because they feel their voices no longer matter. In my unique viewpoint, I have come to believe that more individuals from both sides would do well spending a little time actively learning about each others work first hand.

I believe that a seminar on science policy should be a part of every graduate students training and included as part of that seminar is the opportunity to visit capitol hill to learn about the work done by state representatives and committee staff, or attend a hearing. At the very least I think primary investigators and there students should watch an archived hearing or markup regarding an issue or issues significant to their research and graduate training. On the other hand, I believe it would be very beneficial for members of the various subcommittees to spend a few days visiting a research lab, and not in that formal cursory walk through that so often occurs, but a proper guided visit where they can get a first hand look at the work done by primary investigators, graduate students and their administrative staff.

Maybe I am too much of an optimist, but I really do believe that for us to advance as a nation in Science and Technology we must continue to efficiently align the interests of the research and the legislative community. Walking an honest and reflective mile today can mean a productive STEM future for generations to come.

 

Dr. Allen-Ramdial is currently an intern for the House of Representatives Committee on Science Space and Technology.