Beyond “The Pipeline”: Reframing Science’s Diversity Challenge

Written by Dr. Kenneth Gibbs Jr.

One of the most commonly used metaphors for describing the solution for growing and diversifying America’s scientific talent pool is the “STEM pipeline.” Major policy reports have called on the U.S. to enlarge it so it does not fall behind other nations. Scholars and the popular press have highlighted the need to fix pipeline “leaks” that result in the disproportionate losses of women and minorities. While this metaphor has been helpful in focusing attention on careers in science, I am increasingly convinced that it fails us because it limits our view of the problems and their solutions. Further, these failures are actually hindering efforts to enhance scientific diversity—that is, cultivating talent, and promoting the full inclusion of excellence across the social spectrum.

Limitations of the “Pipeline”
The “pipeline” refers to the educational pathway—from elementary school through college, graduate school or the postdoc—that students complete in the pursuit of a STEM career. There are (at least) two big limitations with the metaphor. First, it reinforces the notion of a strict, linear sequence for becoming a scientist where none exists. There are of course certain benchmarks and competencies that need to be reached for one to be a capable scientist. However, if science wants to benefit from the talents of people from all backgrounds, then diversity efforts must focus on making sure there are more pathways that allow capable, hard-working people to join and participate in the field.

Second, and maybe most importantly, the linear nature of a “pipeline” means that the only way to enhance scientific diversity is to increase the number of people from underrepresented backgrounds entering the system. That is, pipeline framing focuses attention on the number of scientists from underrepresented (UR) backgrounds, and takes focus away from whether the environments and systems in which they are educated and work are supportive and promote inclusion. A major presupposition of pipeline framing is that if more girls and women, minorities, or whatever UR groups were interested in science and progressed through the system, scientific workforce diversity challenges would be solved. While numbers are of course part of the issue, a study I recently published with my colleague Kimberly Griffin suggests that the reason for the lack of diversity is much more structural in nature.

Disparate Career Trajectories Among PhDs
Professor Griffin and I
have spent the past few years studying science PhD recipients. By definition, PhDs are committed to science—no one does that much schooling if they’re not. Moreover, having reached the end of the educational “pipeline,” a PhD recipient has navigated any potential barrier to access, retention, or persistence. Thus they provide an excellent group from which to test the idea that by increasing the number of trained people from UR backgrounds, we can enhance diversity.

In our work, published in PLOS ONE, we surveyed a large sample of PhDs in the biomedical sciences (my home discipline). We asked them about their career preferences over time, as well as factors known to be important in pursuing a scientific career—mentoring, self-confidence and graduate school experiences. We also included objective measures—for example, the number of scientific publications they had produced and the types of institutions where they were educated. If the “pipeline” framing was correct, then one would assume there would be no differences in career trajectories of these Ph.Ds. across lines of race/ethnicity or gender after accounting for any potential differences in these important factors.   However, our results showed just the opposite.

When statistically accounting for any difference in these important factors, including objective measures, women and scientists from underrepresented minority (URM) backgrounds were 36-54 percent less likely than White or Asian men to express interest in a career as a faculty member in a research university upon the completion of graduate school. Further, URM women PhDs were twice as likely as scientists from all other groups to express high interest in a career outside of research.

Let that sink in.

Among science PhDs who are otherwise similar on important metrics such as publication record, mentoring support and self-confidence, we still see differences in the career pathways they show interest in pursuing. This, in my view, means that simply focusing on getting more people into and through the educational system will not be sufficient to solve science’s diversity problems. Instead, efforts must focus on creating a system that highly trained and talented scientists from all backgroundswant to be a part of.

Toward Systemic Reform
To be clear, I support programs and initiatives that aim to increase the numbers of students generally, and from UR backgrounds specifically, entering scientific training. I have benefitted from many programs that support young scientists.  These include the North Carolina School of Science and Mathematics, UMBC’s Meyerhoff Scholarship Program, the Leadership Alliance, the National Science Foundation’sGraduate Research Fellowship Program, and many more.

Having more scientifically trained people, no matter what career pathway they take, is in my view incredibly important. However, efforts to increase the numbers of women, minorities and other UR groups in the sciences should be coupled with reforms that make sure the institutions training them, and the funding agencies supporting scientific research, promote inclusion.

In addition to focusing on the number of individuals the system produces, policy efforts must also focus on making sure that all scientists have high quality experiences and are well supported throughout their education, training and career.My hypothesis is that if scientists from all backgrounds felt that they would be well supported in the scientific enterprise—particularly the universities where the bulk of federally-funded research is conducted—then we would start to see greater levels of diversity.

Diversity is a byproduct of a highly functioning system that supports scientists from all backgrounds. Hence, we need to go beyond “the pipeline” and begin to tackle the institutional and systemic structures that lead to the loss of talent from diverse backgrounds in the sciences. In subsequent posts, I’ll share more on reasons why I believe these differences exist, and how we might begin to tackle them.

* The views expressed here are the personal opinion of the author alone, and do not necessarily represent the positions of the institutions with which he is affiliated. To see more of our work, follow the links below:

“Biomedical Ph.D. Career Interest Patterns by Race/Ethnicity and Gender”

“What Do I Want to Be With My Ph.D.? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science Ph.D. Graduates”

About the Author: Kenneth (Kenny) Gibbs, Jr., PhD, is a Cancer Prevention Fellow at the NCI. He’s a lab scientist turned science policy-ist whose research focuses on strengthening the research enterprise through promoting inclusive excellence. Follow him on Twitter @KennyGibbsPhD and@STEMPhDCareers.

Article reposted with permission from the author. Originally posted in Scientific American Voices Blog.

Could Tuition-Free Colleges and Universities Help Diversify STEM?

Money pig graduate

Written By Dr. Erika E. Alexander

In recent months, several legislative proposals have been presented that might signal the end of times for college tuition. These proposals have been put forth by legislators in Michigan, New York, Tennessee, Oregon and Mississippi, and would allow students to get a college education at the state or community college of their choice for “free”.

Michigan House Bill No. 5315 (affectionately called The “Pay It Forward bill”) would provide up to 200 in-state students interest-free loans for college tuition at either a 2- or 4-year institution. Once a student has graduated from their institution and attained a position that puts them above the federal poverty line, they are required to pay a fixed percentage of their adjusted gross income into a fund, which will provide for financial aid of future college students. The amount the student would pay depends on what type of school they attended; 2% for community college students, and 4% for public university students. Students would be required to pay this percentage for five years for every year they attended school under the program. This means, a student who attended a Michigan school for five years, would pay 4% of their income into the fund for 25 years.

In New York, the idea is to provide New York residents free tuition to attend a university, college or community college within the SUNY (State University of New York) system. In return, students are required to complete 250 hours of community service a year while enrolled, and commit to stay in New York for five years after graduation, presumably to keep well-educated talent within the state. While costing the state close to $1 billion dollars to implement, the co-sponsors of the NY bill say it will result in $3 billion dollars of community service hours, as well as increased sales and property tax revenue created by students starting their post-graduate lives in the state.

While these proposed programs in Michigan and New York, as well as the programs in Tennessee, Oregon and Mississippi, might encourage students from all walks of life to consider college as an affordable option, the question arises of how this would really change the college population. I argue that these programs would also have the effect of increasing diversity in STEM fields.

One obvious effect of these programs is that free tuition would allow more low-income students to access schools with high quality STEM programs and cutting edge research. These students would get to interact with and be mentored by world-class researchers and faculty, generating many future opportunities to which they may not have previously had access. It would also make the path easier for students who need a little help to strengthen their knowledge of hard sciences, but can’t afford to pay for community college alone. According to a recent report by the Institute for College Access and Success, African-American, Latino, and Native American community college students are more likely to attend schools which do not participate in federal student loan programs. In some states, particularly in the south, more than a fifth of community-college students are denied access to federal loans. This means that in order to gain education, students must pay tuition for these schools out of pocket. Community college tuition has been steadily increasing, as more students see them as a viable alternative to traditional colleges. By removing this barrier to education, students can focus maintaining the program’s GPA requirements and getting the most out of their college experience.

Similarly, removal of the intimidation factor of soaring loan interest rates and crippling debt may encourage other students to follow their passion. The average student might choose a degree in a field that they are not particularly enthused about because they know that their future career will pay enough to keep them living comfortably while they repay student loans. Conversely, scientists generally choose their field for the love of science and knowledge and not the money. Most postdocs can describe in detail the profound sense of dread they experienced upon receipt of their first college loan repayment notice from Sallie Mae. By eliminating the threat of unmanageable future debt, underrepresented students may feel more comfortable pursuing degrees in STEM and even academia.

Another benefit to the programs would be the retention of homegrown talent. While I do advocate seeing the world a bit before settling down, many urban areas would benefit from educated locals staying around. These students could help to make a difference in their own communities, by demonstrating that college is possible and by using their education to make changes. Providing an incentive to attend a great college and work in one’s home state could be particularly tempting to talented students who already have familial obligations. The opportunity to attend these schools close to home for “free” may make the offer one that is too sweet to resist.

I would also posit that by increasing underrepresented minority access to high-quality programs, more role models in STEM would begin to appear. Aspiring scientists of color would see many people who look like them in top positions, demonstrating their passion for their work, and Neil DeGrasse Tyson would become much less of an anomaly. This might inspire younger students of color to pursue their dreams of being an astrophysicist, starting a booming technology startup business, or becoming a star of their own engineering television show. And thus, the cycle would continue, until “underrepresented” is no longer an accurate description of people of color within STEM careers.

For now, this idea of a “free” college education is still within the legislative proposal stage. There are still kinks to work out including: whether/how students should be evaluated for acceptance into the program (GPA, essays, application?) Should schools also be subjected to a rigorous selection process in order to be allowed to participate? Another issue is the seeming dependence (at least in Michigan) upon graduate repayment of loans to sustain the program over the years. How will the governing body ensure that graduates will be able to repay their interest free loans (ie secure employment that puts them “above the poverty line”), and that their repayment will be sufficient to aid future students? Despite these questions, this concept of a free education is still very interesting, and one that just might change the face of STEM and academia.


As an aside, there are still free (Really. It’s FREE free) educational options for the curious. One such option is to complete a MOOC. MOOCs (massively open online courses) are free online course taught by video lecture to thousands of people at a time. Topics range from “Developing your Musicianship” (Berklee College of Music) to “Programming Cloud Services for Android Handheld Systems” (Vanderbilt University). The Poston Collective has written about these useful mini-courses before, and you can read more about them here. While these free courses generally don’t result in a traditional degree, they are often taught by industry leaders and can be a great way to keep up with a dynamic career field. Many esteemed institutions of higher learning including Stanford, Harvard and MIT have released free MOOCs.