Beyond “The Pipeline”: Reframing Science’s Diversity Challenge

Written by Dr. Kenneth Gibbs Jr.

One of the most commonly used metaphors for describing the solution for growing and diversifying America’s scientific talent pool is the “STEM pipeline.” Major policy reports have called on the U.S. to enlarge it so it does not fall behind other nations. Scholars and the popular press have highlighted the need to fix pipeline “leaks” that result in the disproportionate losses of women and minorities. While this metaphor has been helpful in focusing attention on careers in science, I am increasingly convinced that it fails us because it limits our view of the problems and their solutions. Further, these failures are actually hindering efforts to enhance scientific diversity—that is, cultivating talent, and promoting the full inclusion of excellence across the social spectrum.

Limitations of the “Pipeline”
The “pipeline” refers to the educational pathway—from elementary school through college, graduate school or the postdoc—that students complete in the pursuit of a STEM career. There are (at least) two big limitations with the metaphor. First, it reinforces the notion of a strict, linear sequence for becoming a scientist where none exists. There are of course certain benchmarks and competencies that need to be reached for one to be a capable scientist. However, if science wants to benefit from the talents of people from all backgrounds, then diversity efforts must focus on making sure there are more pathways that allow capable, hard-working people to join and participate in the field.

Second, and maybe most importantly, the linear nature of a “pipeline” means that the only way to enhance scientific diversity is to increase the number of people from underrepresented backgrounds entering the system. That is, pipeline framing focuses attention on the number of scientists from underrepresented (UR) backgrounds, and takes focus away from whether the environments and systems in which they are educated and work are supportive and promote inclusion. A major presupposition of pipeline framing is that if more girls and women, minorities, or whatever UR groups were interested in science and progressed through the system, scientific workforce diversity challenges would be solved. While numbers are of course part of the issue, a study I recently published with my colleague Kimberly Griffin suggests that the reason for the lack of diversity is much more structural in nature.

Disparate Career Trajectories Among PhDs
Professor Griffin and I
have spent the past few years studying science PhD recipients. By definition, PhDs are committed to science—no one does that much schooling if they’re not. Moreover, having reached the end of the educational “pipeline,” a PhD recipient has navigated any potential barrier to access, retention, or persistence. Thus they provide an excellent group from which to test the idea that by increasing the number of trained people from UR backgrounds, we can enhance diversity.

In our work, published in PLOS ONE, we surveyed a large sample of PhDs in the biomedical sciences (my home discipline). We asked them about their career preferences over time, as well as factors known to be important in pursuing a scientific career—mentoring, self-confidence and graduate school experiences. We also included objective measures—for example, the number of scientific publications they had produced and the types of institutions where they were educated. If the “pipeline” framing was correct, then one would assume there would be no differences in career trajectories of these Ph.Ds. across lines of race/ethnicity or gender after accounting for any potential differences in these important factors.   However, our results showed just the opposite.

When statistically accounting for any difference in these important factors, including objective measures, women and scientists from underrepresented minority (URM) backgrounds were 36-54 percent less likely than White or Asian men to express interest in a career as a faculty member in a research university upon the completion of graduate school. Further, URM women PhDs were twice as likely as scientists from all other groups to express high interest in a career outside of research.

Let that sink in.

Among science PhDs who are otherwise similar on important metrics such as publication record, mentoring support and self-confidence, we still see differences in the career pathways they show interest in pursuing. This, in my view, means that simply focusing on getting more people into and through the educational system will not be sufficient to solve science’s diversity problems. Instead, efforts must focus on creating a system that highly trained and talented scientists from all backgroundswant to be a part of.

Toward Systemic Reform
To be clear, I support programs and initiatives that aim to increase the numbers of students generally, and from UR backgrounds specifically, entering scientific training. I have benefitted from many programs that support young scientists.  These include the North Carolina School of Science and Mathematics, UMBC’s Meyerhoff Scholarship Program, the Leadership Alliance, the National Science Foundation’sGraduate Research Fellowship Program, and many more.

Having more scientifically trained people, no matter what career pathway they take, is in my view incredibly important. However, efforts to increase the numbers of women, minorities and other UR groups in the sciences should be coupled with reforms that make sure the institutions training them, and the funding agencies supporting scientific research, promote inclusion.

In addition to focusing on the number of individuals the system produces, policy efforts must also focus on making sure that all scientists have high quality experiences and are well supported throughout their education, training and career.My hypothesis is that if scientists from all backgrounds felt that they would be well supported in the scientific enterprise—particularly the universities where the bulk of federally-funded research is conducted—then we would start to see greater levels of diversity.

Diversity is a byproduct of a highly functioning system that supports scientists from all backgrounds. Hence, we need to go beyond “the pipeline” and begin to tackle the institutional and systemic structures that lead to the loss of talent from diverse backgrounds in the sciences. In subsequent posts, I’ll share more on reasons why I believe these differences exist, and how we might begin to tackle them.

* The views expressed here are the personal opinion of the author alone, and do not necessarily represent the positions of the institutions with which he is affiliated. To see more of our work, follow the links below:

“Biomedical Ph.D. Career Interest Patterns by Race/Ethnicity and Gender”

“What Do I Want to Be With My Ph.D.? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science Ph.D. Graduates”

About the Author: Kenneth (Kenny) Gibbs, Jr., PhD, is a Cancer Prevention Fellow at the NCI. He’s a lab scientist turned science policy-ist whose research focuses on strengthening the research enterprise through promoting inclusive excellence. Follow him on Twitter @KennyGibbsPhD and@STEMPhDCareers.

Article reposted with permission from the author. Originally posted in Scientific American Voices Blog.

Age Ain’t Nothing But A Number: Should the NIH impose an average age for grants?

Written By Dr. Chloe N. Poston

Close your eyes and think of a scientist. What does this person look like? Is this person a man or a woman? Young or old? Stylish or disheveled? I’m willing to bet what you saw in your mind (especially if you don’t know any scientists personally) is something closer to a photo of Albert Einstein or some version of the characters on Big Bang Theory. Rarely do we imagine the stages between a student and full-fledged scientist. However, this “in-between” time often defines people’s scientific trajectories; decisions in this phase can be career making or breaking.

Here’s what it looks like. The classic career path in science starts with an undergraduate degree, followed usually by a masters and then a doctoral degree. After the doctoral degree comes a “post-doc” or post-doctoral position where you train with a more senior scientist in your field to become an independent researcher. In other professions, the equivalent of a post-doc is an actual entry-level position with retirement benefits that counts towards professional experiences. Unfortunately, the post-doc is more like an extension of graduate school, where the pay is meager and the label of “trainee” leads employers outside of academia to ignore these years as “experience”.

You might wonder how long this takes. Let’s do the math. If a budding scientist starts college at age 18, completes a BS in 4 years, finishes a Masters and PhD in 6 years, and trains as a postdoc for 2-3 years, then that individual is ready to start on an independent path at the age of 31 in the most ideal of situations. This means today’s “early career” scientists are 33 years old before they begin to look for work as independent scientists. There are data to support this informal calculation: the Survey of Earned Doctorates shows that in the fields of biomedical sciences and chemistry people are not actually getting their first job after a post-doc until the age of 35.

It is at this point that early career scientists on the tenure track begin to apply for R01 grants from the NIH. For my non-scientist readers, an R01 grant provides an average of $400,000 for a research project that is in line with the priorities of the National Institute of Health. These grants finance the academic biomedical research enterprise and are an important step for new professors to establish themselves with solid research and publications, which are often the measure of scientific productivity. Many universities require that new professors secure an R01 grant within the first five years of being hired to remain on the tenure track.

Of course young scientists are not the only people vying for this funding; the competition is fierce and spans from early career to well established scientists. The average age of R01 recipients has steadily increased. In 1998, PhDs were awarded their first R01 at the age of 36; in 2014 that age is 42. These stats have sparked much debate. Maryland Rep. Andy Harris thinks that the age distribution of awarded grants should be mandated. And others have differing opinions. Some think this is a function of too many postdocs with few realistic employment prospects in academia.

However, there are several other reasons that the average age of R01 recipients is in the 40’s and not the 30’s: 1) if students and post-docs are recognizing that academic prospects are slim, perhaps they are exploring other options that are related to science, but don’t require bench work; 2) perhaps post-docs and younger independent researchers are taking advantage of pathway to independence mechanisms like K99-R00, which provides NIH funding to bridge post-doctoral training and the process of starting a new laboratory; and 3) young post-docs may not be adequately trained to prepare competitive grant proposals to vie for an ever shrinking budget.

Young scientists are facing more difficult grant reviews than their advisers faced at the same point in their career as a function of less money. They are keenly aware of the small number of tenure track academic positions available. They are intelligently weighing their options. Some will work through this difficult era in the academic sector, and they will be awarded R01 grants. Others will begin to explore other career paths like industry, science writing, policy, higher education administration, grant administration, and some may leave scientific research fields all together. None of these people will apply for R01 grants.

Perhaps this is the source of the skewed age. More people are realizing that they can leverage scientific skills in other fields and find success. The age-old scientific career path that leads straight to the professoriate can no longer accommodate all who embark upon it. Young people, who are still training to be scientists are accepting that fact and making other plans.

Trends at the NIH and elsewhere should and do reflect that. So while the stats are interesting, it’s safe to say that age is pretty poor metric to use for programmatic recommendations.

What do you think? Share your comments below.

 

 

 

Why “alternative careers” is the ultimate misnomer

I’ve been on a bit of a hiatus primarily because I’ve been gearing up to attend the Experimental Biology conference in Boston this week. In case you’ve never attended a scientific conference, it is best described as a convergence of 20,000 of the best and brightest scientists, representatives of companies that support their research, government agencies that fund their research, and their contemporary, eventual successors. These events are meant to foster a great exchange of ideas, data, and opportunities for all in attendance. For those who are out going enough to capitalize on chance encounters, they often do.

Amidst all the scientific talks and posters were panels and discussions focused on “alternative career paths” for scientists. “Alternative to what?” is my immediate thought. On the panels sit patent law attorneys, government agents, clinical research associates, medical science liasons, and high school teachers, all extolling the virtues of their decision to pursue an “alternative career path”. Both the National Institutes of Health (NIH) and the National Science Foundation (NSF) have performed in depth analysis of the academic job market in the life and physical sciences. Both have come to the conclusion that there are not enough research funds or tenure track faculty positions to support the sizable increase in “qualified” individuals produced by universities each year. Unless newly minted PhD’s are independently wealthy or lucky enough to land one of these positions, the careers mentioned above are the likely career paths; not the alternative ones.

I am happy that regardless of what they are being called, more attention is being focused on other ways to use a Ph.D. It’s apparent that we all can’t be professors, but that doesn’t mean we can’t make significant contributions to science and society.

There are no “alternative careers”; there are just careers.